7 самых забавных применений нейронных сетей

Многие разработки на  основе этой технологии курьезны.
7 самых забавных применений нейронных сетей

Что такое нейронные сети

Так называют вычислительные модели вместе с софтом и железом для их осуществления. Нейронные сети появились еще на рубеже 1950–1960-х годов и с тех пор пережили пару скачков в развитии, которые сменялись затишьем.

Нынешний этап разработок начался примерно десять лет назад, когда вычислительные мощности компьютеров выросли, а ученые усовершенствовали принципы обучения глубоких (с несколькими слоями) нейронных сетей.

Обучаемость — ключевая черта нейронных сетей. Обычная программа действует строго по заложенным алгоритмам — в сущности, это подробная инструкция для задач, где решение продумано заранее. А нейронные сети до некоторой степени напоминают человеческий мозг и сами ищут способ справиться с проблемой.

Имея входную и выходную информацию, они находят закономерности и далее ищут ответ в похожей ситуации. К примеру, если загрузить в правильно настроенную нейронную сеть тысячи фотографий кошек, то со временем она поймет, что же определяет облик этого животного, и различит питомца на новых картинках или видео.

Впрочем, распознавание изображений далеко не единственная область применения.

Как они устроены и зачем нужны

Нейронные сети состоят из простых вычислительных блоков-процессоров, структурированных подобно клеткам головного мозга. Как нейроны принимают и передают электрический импульс, так и процессоры получают и дальше пересылают сигнал (им может быть фотография или другая неструктурированная информация).

Обычные компьютерные программы имеют дело с длинными последовательностями вычислений и не лучшим образом справляются с параллельными потоками. В нейронных сетях, наоборот, цепочки вычислений короткие, зато их очень много, и они обрабатываются одновременно — так же, как в мозге, где считаные клетки выполняют множество простых операций.

Нейронные сети лучше справляются с задачами, в которых нужно распознать закономерности, паттерны — в общем, где человек или привычные приложения обычно сдаются. Их используют в разного рода прогнозах, распознавании речи, изображений, лиц, почерка...

Комментарии
Комментарии